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Abstract: This problem deals with the in�uence of chemically reactive Rivlin-Ericksen

viscoelastic �uid in a circular tube with no thermal convection. The �uid starts heat genera-

tion because of its reactive nature of chemically viscoelastic �uid which set up free convection

currents inside the tube. The governing equations are modelled using the fully developed

�ow conditions. Analytical algorithm based on the mode�ed homotopy perturbation method

(HPM), incorporating the He�s polynomial and combined with the Laplace transform is im-

plemented in time and space with the second grade constitutive model for the viscoelastic

liquids. Explicit analytical expressions for the transient state as well as the steady state for

velocity �eld and temperature �eld have been derived. These solutions are written as the

sum between the permanent solutions and the transient solutions. The algorithm is validated

against the classical solution of this problem for reactive viscous �uid results. The nature of

the wall shear stress and Nusselt number engendered due to the �ow are determined. The

results also indicate that it takes longer to attain steady-state in the case of molten polymer

than water and air.

Key words: Reactive viscoelastic �uid, Transient free convection, Vertical tube, Analyt-

ical solution

1 Introduction

In view of the increasing industrial importance of non-Newtonian �uids, the Rivlin-Erickson

�uid was examine by Baoku et al. (2013) ; Kumar et al. (2013) ; Hayat et al. (2013) ; Khani

(2009) and Olajuwon (2011) :

Transient free convection �ow of reactive are extremely useful in the design and opera-
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tions of many engineering equipments. It has therefore been the subject of many detailed,

mostly numerical studies for di¤erent �ow con�gurations. Most of the interest in this sub-

ject is due to its applications, for instance, in the design of cooling systems for electronic

devices and in the �eld of solar energy collection. Some of the published papers on this topic,

such as Makinde (2005) investigated exothermic explosions inside a cylinder pipe for viscous

�uid under Biomolecular Arrhenius and sensitized reactive rates neglecting the intake of

the materia. Analytical solutions are obtained for the governing nonlinear boundary-value

problem using perturbation technique together with a special type of Hermite�Pad e approx-

imants. Makinde (2008) analyzed reactive viscous �uid in a horizontal channel with sliding

wall. He obtained aproximate solutions for the governing nonlinear boundary value problem

using regular perturbation techniques together with a special type of Hermite�Pad´e approx-

imants. Makinde (2009) investigated the thermal stability of a reactive viscous �ow through

a horizontal channel embeded in porous medium with convective boundary condition. The

Brinkman model is employed and analytical solutions are constructed for the governing non-

linear boundary-value problem using a perturbation technique together with a special type

of Hermite-Padé approximants and important properties of the temperature �eld including

bifurcations and thermal criticality are discussed. Basant et al. (2011a) analyzed transient

free convection �ow of reactive viscous �uid in vertical tube. They obtained the transient

solution using numerical schemes and steady-state solution by regular perturbation method.

The signa�cant results from their study are that both velocity and temperature increases

with the increase in the value of reactant consuption parameter and dimensionless time until

they reach steady-state value. Basant et al. (2011b) investigated the transient free convection

�ow of reactive viscous �uid in vertical channel. The transient solution for the problem was

solved using numerical schemes and steady-state solution by regular perturbation method.

The results show that it takes longer time to attain steady-state in the case of water than

air.

All the above quoted analyses of transient free convection �ow of reactive �uid are based

on the hypothesis that the �uids are Newtonian. However, because of their fundamental

and technological importance, theoretical studies of transient free convection �ow of reactive

non-Newtonian are very important in several industrial processes; industrial scale lubricants

(mostly reactive polymer liquids). Sivaraj and Rushi Kumar (2013) analyzed the chemically

responding dusty viscoelastic �uid (Walters liquid model-B) �ow within an irregular channel
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with convective boundary. They solved the combined partial di¤erential equations analyti-

cally using perturbation technique.Their results, reveal that the rate pro�les of dusty �uid

are greater compared to dust contaminants. Makinde et al. (2011) analyzed an unsteady

�ow of the reactive variable viscosity non-Newtonian �uid via a porous saturated medium

with asymmetric convective boundary conditions. They utilized that exothermic chemical

responses occur inside the �ow system which the asymmetric convective heat exchange using

the ambient in the surfaces follow Newton�s law of cooling. The model formulation of coupled

nonlinear partial di¤erential equations of the problem are derived and then solved numer-

ically using a semi-implicit �nite di¤erence scheme. Rundora and Makinde (2013) looked

into the results of suction/injection on unsteady reactive variable viscosity non-Newtonian

�uid �ow inside a channel full of porous medium and convective boundary conditions. The

governing �ow equations are solved using a semi-implicit �nite di¤erence scheme. Results

reveals that, the suction injection Reynolds number, the porous medium parameter and also

the Prandtl number possess a diminishing impact on the velocity of and transfer in the

channel walls.

In this paper, the analytical solutions of unsteady free convection �ow of reactive sec-

ond grade �uid in vertical tube are presented. To the best of authors knowledge, theoretical

study of unsteady free convection �ow due to reactive nature of second grade �uid in vertical

tube have not been studied before and it is the main aim of this paper to study this problem.

The He�s polynomial incorporated into the homotopy perturbation method combined with

the Laplace transform are used to solve the momentum and the energy equations. Flow and

heat transfer results for a range of values of the pertinent parameters have been reported.

E¤ects of pertinent parameters, such as the viscoelastic parameter, the suction/injection

parameter, the Grashof number, the Reynolds number, the Prandtl number, the wall tem-

perature parameter and the constant pressure gradient on velocity and temperature pro�les

are shown graphically

2 Description of the problem

We consider the unsteady two dimensional �ow of an incompressible second grade viscoelastic

reactive �uid in a vertical pipe with walls at r = �a: Fig. 1 shows the physical con�gura-

tion. The z�axis is taken along the axis of the pipe and r�axis is taken perpendicular to
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the pipe. Initially, for time t � 0, both the �uid and the pipe are assumed to be at constant

temperature �0. At time t > 0, the reactive nature of the �uid causes heat generation which

set up free convection currents inside the pipe. All the �uid properties except density in the

buoyancy term are considered as constant and Boussinesq approximation is employed. The

constitutive equation for second grade viscoelastic �uids given by Rivlin and Ericksen (1955)

was transform into cylindrical coordinate and then employed. Furthermore, symmetric na-

ture of the �ow is taken into account and pressure gradient is neglected. The boundary layer

equations for the �ow under consideration are

�
@w

@t
=

1

r

@

@r

�
r�
@w

@r

�
+ �1

@

@t

�
1

r

@

@r

�
r
@w

@r

��
+ g� (� � �0) ; (1)

�cp
@�

@t
= �

1

r

@

@r

�
r
@�

@r

�
+ �

�
@w

@r

�2
+ �1

@2w

@t@r

@w

@r
+QC0A exp

�
� E
R�

�
: (2)

where w is the dimensional velocity of the �uid, � is the dimensional temperature, �1 is the

viscoelastic parameter of second grade, � is the �uid density, � is the coe¢ cient of viscosity,

g is the acceleration due to gravity, � is the volumetric coe¢ cient of thermal expansion, cp

is the speci�c heat capacity at constant pressure, � is the thermal conductivity of the �uid,

Q is the heat reaction parameter, C0 is the initial concentration of the reactant species, A

is the rate constant, E is the activation energy and R is the universal gas constant

Due to symmetrical nature of the �ow at r = 0; the initial and boundary conditions are

t � 0 : w = 0; � = �0 for 0 � r � a

t > 0 :
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in Eqs. (12) and (13) and shedding the � notation, we have
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with initial and boundary conditions

t � 0 : w = 0; � = 0 for 0 � r � 1

t > 0 :

8<:
@w

@r
= 0

@�

@r
= 0 at r = 0

w = 0 � = 1 at r = 1
(7)

where � is the second grade parameter, Gr is the Grashof number, Re is the Reynolds

number, Ec is the Echert number, Pr is the Prandtl number, � is the reactant consumption

parameter and � is the activation energy parameter.

The function exp
�

�

1 + ��

�
can be express in power series as
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It is important to mention that when � = 0 (Newtonian �uid), Eqs. (5) and (6) reduce to

those found by Basant et al. [].

3 Analytical solutions

3.1 Mode�ed homotopy perturbation Laplace transform method

The di¤erential Eqs. (5) and (6) satis�ed by the velocity �eld w (r; t) and temperature �eld

� (r; t) are wtritten in form operator E and F :

E (w (r; t)) = 0; (9)

F (� (r; t)) = 0: (10)

Basing on the homotopy idea (He 2006), the operators E and F are decomposed into a linear

part L and a non-linear part N and are written in the form:

L1 (w (r; t)) + pN1 (w (r; t)) = g1 (r) ; (11)

L2 (� (r; t)) + pN2 (� (r; t)) = g2 (r) : (12)

where Lj(j = 1; 2) are linear operator, Nj (j = 1; 2) are non-linear operator, gj (j = 1; 2)

are known function

Focusing on the linear operators Lj in Eqs. (11) and (12) the concept of the homotopy

perturbation method with embedding parameter p are used to generate a series expansion
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for L1 (w (x; t)) and L2 (� (r; t)) as follow:

L1 (w (r; t)) = L

 1X
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!
; (13)
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!
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Switching to the nonlinear operator Nj in Eqs. (11) and (12) we use He�s polynomial, Hn,

as follow:

N1 (w (r; t)) =
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where the He�s polynomial (Ghorbani 2009), Hn; is de�ned as:
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Substituting Eqs. (13)� (16) into Eqs. (11) and (12) we obtain:
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Taking the Laplace transform from both sides of Eqs. (18) and (19) we get:
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Eqs. (20) and (21) can be rewritten in the following form:
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Using Eqs. (22) and (23) we introduce the recursive relation:

LfL1 (w0)g = Lfg1g ; (24)

LfL (�0)g = Lfg2g : (25)
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3.2 Implementation of mode�ed HPM

The Laplace transform of Eqs. (5) and (6) are
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The recursive equations deduce from Eqs. (30) and (31) could be written as follows:
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The solution of the recursive equation, Eqs. (32) and (33), could be expressed by:
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Using the MATHEMATICA symbolic code, the inverse Laplace transform of Eqs. (34) and
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(35) are:
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�5117r4 + 2083r6 � 317r8 + 19r10
�
� r8 (317 + 1296�)

�16r2 (737 + 2781�) + 64 (766 + 4311�) + r6 (2083 + 13104�)

�r4 (5117 + 44496�)
��
� (t)

�
+ EcGr3 Pr

�
�1 + r2

� �
19r10

+Pr
�
49024� 11792r2 � 5117r4 + 2083r6 � 317r8 + 19r10 � r8 (317 + 1296�)

�16r2 (737 + 2781�) + 64 (766 + 4311�) + r6 (2083 + 13104�)

�r4 (5117 + 44496�)
��
�2

+

�
1

53271016243200Re5
�
Gr
�
�1 + r2

� �
�75264EcGr2 Pr (49024

�11792r2 � 5117r4 + 2083r6 � 317r8 + 19r10
�
(t+ �)Re2

+EcGr4Pr2
�
�19149039 + 2938641r2 + 2938641r4 � 550159r6 � 114059r8

+55285r10 � 7435r12 + 405r14
�
+
�
t+ 4t�+ 2�2

�2 � 3612672Re4 (19073
�11800�+ 4054�+ 23600��+ Pr

�
6186� 3039r2 + 761r4

�139r6 + 11r8
�
(�1 + 2�) + r8 (�2 + 4�)� r6 (77 + 46"+ 200� (�1 + 2"))

+r4 (1323 + 354�+ 1400� (�1 + 2�))� r2 (8377 + 1846�+ 5800� (�1 + 2�))
���
�3

�
�

1

832359628800Re3
Gr
�
�1 + r2

� �
�56448

�
6186� 3039r2 + 761r4

�139r6 + 11r8
�
Re2 + EcGr2 Pr

�
�3698928 + 1160304r2 + 179079r4 � 143096r6

+43104r8 � 6288r10 + 425r12
�
(t+ 2�)

�
(�1 + 2�)

�
�4

+

�
1

1061683200Re
Gr
�
14529� 22113r2 + 9900r4 � 2900r6 + 675r8

�99r10 + 8r12
�
(1� 2�)2 t2

�
�5: (36)
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and

�0 (r; t) =

�
1

4

�
1� r2

��
�;

�1 (r; t) =

�
� 1
16
Pr
�
3� 4r2 + r4

�
� (t)

�
�

�
�

1

147456Re2
�
�1 + r2

� �
�2304

�
�3 + r2

�
Re2

+EcGr2 Pr
�
89 + 89r2 � 55r4 + 9r6

�
(t+ �)

��
�2

+

�
1

2304

�
�11 + 18r2 � 9r4 + 2r6

�
(�1 + 2�) t

�
�3

�2 (r; t) =

�
� 1

2304
Pr2

�
�19 + 27r2 � 9r4 + r6

�
�
0
(t)

�
�

+

�
�1

14745600Re2
Pr
�
�1 + r2

� �
�12800

�
19� 8r2 + r4

�
Re2

�EcGr2�
�
Pr
�
5068 + 2843r2 � 2557r4 + 648r6 � 57r8

�
�8
�
�394 + 6r8 � 2225�� 3r6 (23 + 75�) + r4 (281 + 1375�)

�r2 (394 + 2225�)
���

� (t)� EcGr2 Pr

14745600Re2
�
�1 + r2

�
�
Pr
�
�5068� 2843r2 + 2557r4 � 648r6 + 57r8

�
+8
�
�394 + 6r8 � 2225�� 3r6 (23 + 75�) + r4 (281 + 1375�)

�r2 (394 + 2225�)
��
�2

�
�

1

416179814400Re4
�
�1 + r2

� �
�28224EcGr2 Pr

�
�5068� 2843r2

+2557r4 � 643r6 + 57r8
�
Re2 (t+ �) + 5Ec2Gr4Pr2

�
138048 + 138048r2

�58197r4 � 14587r6 + 11873r8 � 2239r10 + 162r12
� �
t2 + 4t�+ 2�2

�
�2822400Re4

�
�64

�
19� 8r2 + r4

�
+ Pr

�
�369 + 239r2 � 85r4 + 11r6

�
(�1 + 2�)))]�3

+

�
1

4246732800Re2
�
�1 + r2

�
t
�
�2800

�
�369 + 239r2 � 85r4 + 11r6

�
Re2

+EcGr2 Pr
�
99168 + 19068r2 � 40107r4 + 20693r6 � 4507r8 + 425r10

�
(t+ 2�)) (�1 + 2�)]�4

�
�

1

29491200

�
�2457 + 4400r2 � 2900r4 + 1200r6 � 275r8 + 32r10

�
(�1 + 2�)2 t2

�
�5(37)

where � (t) denotes Diract delta function and �
0
(t) is the derivative of � (t).

Thus, the modi�ed homotopy solution for velocity �eld and temperature distribution
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correct up to second order are given by

w (r; t) =

�
1

64

Gr

Re

�
3� 4r2 + r4

��
�

+

�
1

2304

Gr

Re

�
�1 + r2

� �
19 + r4 + Pr

�
19� 8r2 + r4

�
+108�� 4r2 (2 + 9�)

��
� (t)�

+

�
1

14745600

Gr

Re3
�
�1 + r2

� �
�6400

�
19� 8r2 + r4

�
Re2

+EcGr2Re
�
�1916 + 309r2 + 309r4 � 91r6 + 9r8

�
(t+ �)

��
�2

+

�
1

73728

Gr

Re

�
59� 88r2 + 36r4 � 8r6 + r8

�
(�1 + 2�) t

�
�3

+

�
1

147456

Gr

Re

�
�1 + r2

� �
�211 + r6 + Pr2

�
�211 + 93r2 � 15r4 + r6

�
�2432�� 6912�2 � r4 (15 + 128�) + r2

�
93 + 1024�+ 2304�2

�
+Pr

�
�211 + r6 � 1216�� r4 (15 + 64�) + r2 (93 + 512�)

���
�
0
(t)�

+

�
1

707788800

1

Re3
�
Gr
�
�1 + r2

� �
�4800Re2s

�
�211 + r6

+2Pr
�
�211 + 98r2 � 15r4 + r6

�
� 1216�� r4 (15 + 64�)

+r2 (93 + 512�)
�
+ EcGr2 Pr�

�
19r10 + Pr

�
49024� 11792r2

�5117r4 + 2083r6 � 317r8 + 19r10
�
� r8 (317 + 1296�)

�16r2 (737 + 2781�) + 64 (766 + 4311�) + r6 (2083 + 13104�)

�r4 (5117 + 44496�)
��
� (t)

�
+ EcGr3 Pr

�
�1 + r2

� �
19r10

+Pr
�
49024� 11792r2 � 5117r4 + 2083r6 � 317r8 + 19r10 � r8 (317 + 1296�)

�16r2 (737 + 2781�) + 64 (766 + 4311�) + r6 (2083 + 13104�)

�r4 (5117 + 44496�)
��
�2

+

�
1

53271016243200Re5
�
Gr
�
�1 + r2

� �
�75264EcGr2 Pr (49024

�11792r2 � 5117r4 + 2083r6 � 317r8 + 19r10
�
(t+ �)Re2

+EcGr4Pr2
�
�19149039 + 2938641r2 + 2938641r4 � 550159r6 � 114059r8

+55285r10 � 7435r12 + 405r14
�
+
�
t+ 4t�+ 2�2

�2 � 3612672Re4 (19073
�11800�+ 4054�+ 23600��+ Pr

�
6186� 3039r2 + 761r4

�139r6 + 11r8
�
(�1 + 2�) + r8 (�2 + 4�)� r6 (77 + 46"+ 200� (�1 + 2"))

+r4 (1323 + 354�+ 1400� (�1 + 2�))� r2 (8377 + 1846�+ 5800� (�1 + 2�))
���
�3

�
�

1

832359628800Re3
Gr
�
�1 + r2

� �
�56448

�
6186� 3039r2 + 761r4

�139r6 + 11r8
�
Re2 + EcGr2 Pr

�
�3698928 + 1160304r2 + 179079r4 � 143096r6

+43104r8 � 6288r10 + 425r12
�
(t+ 2�)

�
(�1 + 2�)

�
�4

+

�
1

1061683200Re
Gr
�
14529� 22113r2 + 9900r4 � 2900r6 + 675r8

�99r10 + 8r12
�
(1� 2�)2 t2

�
�5: (38)

13



and

� (r; t) =

�
1

4

�
1� r2

��
�

+

�
� 1
16
Pr
�
3� 4r2 + r4

�
� (t)

�
�

�
�

1

147456Re2
�
�1 + r2

� �
�2304

�
�3 + r2

�
Re2

+EcGr2 Pr
�
89 + 89r2 � 55r4 + 9r6

�
(t+ �)

��
�2

+

�
1

2304

�
�11 + 18r2 � 9r4 + 2r6

�
(�1 + 2�) t

�
�3

+

�
� 1

2304
Pr2

�
�19 + 27r2 � 9r4 + r6

�
�
0
(t)

�
�

+

�
�1

14745600Re2
Pr
�
�1 + r2

� �
�12800

�
19� 8r2 + r4

�
Re2

�EcGr2�
�
Pr
�
5068 + 2843r2 � 2557r4 + 648r6 � 57r8

�
�8
�
�394 + 6r8 � 2225�� 3r6 (23 + 75�) + r4 (281 + 1375�)

�r2 (394 + 2225�)
���

� (t)� EcGr2 Pr

14745600Re2
�
�1 + r2

�
�
Pr
�
�5068� 2843r2 + 2557r4 � 648r6 + 57r8

�
+8
�
�394 + 6r8 � 2225�� 3r6 (23 + 75�) + r4 (281 + 1375�)

�r2 (394 + 2225�)
��
�2

�
�

1

416179814400Re4
�
�1 + r2

� �
�28224EcGr2 Pr

�
�5068� 2843r2

+2557r4 � 643r6 + 57r8
�
Re2 (t+ �) + 5Ec2Gr4Pr2

�
138048 + 138048r2

�58197r4 � 14587r6 + 11873r8 � 2239r10 + 162r12
� �
t2 + 4t�+ 2�2

�
�2822400Re4

�
�64

�
19� 8r2 + r4

�
+ Pr

�
�369 + 239r2 � 85r4 + 11r6

�
(�1 + 2�)))]�3

+

�
1

4246732800Re2
�
�1 + r2

�
t
�
�2800

�
�369 + 239r2 � 85r4 + 11r6

�
Re2

+EcGr2 Pr
�
99168 + 19068r2 � 40107r4 + 20693r6 � 4507r8 + 425r10

�
(t+ 2�)) (�1 + 2�)]�4

�
�

1

29491200

�
�2457 + 4400r2 � 2900r4

+1200r6 � 275r8 + 32r10
�
(�1 + 2�)2 t2

�
�5 (39)
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3.3 Nusselt number and wall friction

The expressions for Nusselt number and wall friction, which are measures of the heat transfer

rate and shear stress at the inner surface of the tube respectively, are presented in the

following

� = lim
r!1

�
@u

@r

�
=

�
Gr

Re

�
� 1
16
+
1

96
(1 + Pr+6�) � (t)� 1

6144

�
11 + 11Pr2 + 128�

+384�2 + Pr (11 + 64�)
��
�
0
(t)
i
�

+

�
1

5898240Re3
�
�61440GrRe2 + EcGr3 Pr (565 + 565Pr�1104t+ 2208�)

�
+

Gr

5898240Re3
�
960Re2 (11 + 22Pr+64�) + EcGr3 Pr� (565 + 565Pr+3312�)

�
� (t)

�
�2

+

�
� 1

10569646080

Gr

Re5
�
1012480EcGr2Pr2 (t+ �) + 5511Ec2Gr4Pr2

�
t2 + 4t�+ 2�2

��
+86016Re4 (199 + 120t� 120�+ 42�� 24t�+ 240��+ 63Pr (�1 + 2�))

��
�3

+

�
1

495452160

Gr

Re3
t
�
254016Re2 + 2935EcGr2 Pr (t+ 2�)

�
(�1 + 2�)

�
�4

+

�
� 73

4423680Re
(1� 2�)2

�
�5 (40)

Nu = lim
r!1

�
@�

@r

�
=

�
�1
2
+
1

16
Pr � (t)� 1

96
Pr2�

0
(t)

�
�

+

�
1

1228800Re2
Pr
�
2560Re2 + EcGr2� (76 + 99Pr+440�)

�
� (t)

�
�2

+

�
� 1

495452160Re4
�
399168EcGr2 Pr (t+ �) + 2537Ec2Gr4Pr2

�
t2 + 4t�+ 2�2

�
+80640Re4 (17Pr (�1 + 2�) + 32 (2 + t� 2t�))

��
�3

+

�
1

35389440Re2
t
�
97920Re2 + 1579EcGr2 Pr (t+ 2�)

�
(�1 + 2�)

�
�4

+

�
� 7

81920
t2 (1� 2�)2

�
�5: (41)

4 Results and discussion

To study the e¤ects of reactant consumption parameter (�), the activation energy parameter

(�) ; the Grashof number (Gr), the Reynolds number (Re), the Prandtl number (Pr), the

viscoelastic parameter (�) on �ow �eld in the boundary layer region, the numerical values

of velocity and temperature pro�les, computed from the analytical solution mentioned in

Sects. 2 and 3, are displayed graphically versus boundary layer coordinate r in Figs. 1, 2,
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3, 4 and 5 for various values of consumption parameter �; viscoelastic parameter �, Grashof

number Gr and for Prandtl number corresponding to non-Newtonian �uid (Pr > 7) for �xed

activation energy �:

The expression for temperature �eld � (r; t), provided given by Eq. (42), are shown

graphically in Figs. 2 and 3: Fig. 2 present the e¤ect of � on �. It is observed from this

�gure that as � increases the temperature increases increases which is physically true because

as reaction increases the temperature within the �uid will increase. The e¤ect of Pr on � have

been shown in Fig. 3. Two working �uids are water (Pr = 7) and for some dilute polymer

(Pr = 10; :::50) : It is evident from this �gure that the temperature of water is greater than

that of molten polymer. This property is preserved for all t; showing the inverse variation

of � with Pr :

The expression for velocity �eld w (r; t), given by Eq. (41), are shown graphically in

Figs. 4 � 6 for small value of time (t = 0:2) and large value of time (t = 6) : E¤ect of �

on w is shown in Fig. 4 as � increases the �uid velocity increases. Also, the in�uence of

the � on the velocity �eld is signi�cant for large values of the time t. Fig. 5 displays the

e¤ect of Gr on w: Since Gr signi�es the relative e¤ects of thermal buoyancy force to viscous

hydrodynamic force in the boundary layer region. It is observed from Fig. 5 that an increase

in Gr leads to an increase in �uid velocity in the boundary layer region. This implies that

thermal buoyancy force tends to accelerate �uid �ow in vertical tube. Figure 6 demonstrates

the e¤ects of � on w. It is found from Fig. 6 that the in�uence of viscoelastic parameter �

on the �uid motion is signi¢ cant only for small values of the time t. We can see from Fig.

6 that as � increases the velocity of the �uid decreases continuously inside the tube. From

this Figure, we can also compare the velocity of viscoelastic with velocity corresponding to

Newtonian �uid (� = 0) : For small values of time t, the Newtonian �uid �ows faster than

viscoelastic �uid. For increasing t, the viscoelastic �uid tend to steady state.

The numerical values of non-dimensional wall shear stress � , computed from the analytical

expression given by Eq. (), are presented in tabular form in Tables 1 and 2 for various

values of �; � and t taking Pr = 10, Gr = Re = Ec = 1 and � = 0:01 while that of

Nusselt number Nu, computed from the analytical expression presented given by Eq. (), are

displayed in tabular form in Tables 3 and 4 for di¤erent values of Pr; � and t: It is evident

from Table 1 that the wall shear stress increases as the time t progresses while it decreases on

increasing � which imply that time has tendency to enhance skin friction whereas viscoelastic
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parameter has reverse e¤ect on it. In Table 2; wall shear stress is tabulated against reactant

consumption parameter �; for di¤erent values of time t and � = 0:4: It is obseved that

as � increases the wall shear stress increases. This really is physically true because when

� increases the velocity increases and therefore there is high wall shear stress around the

boundary. Table 3 show numerical values for Nusselt number for di¤erent values of time t

and reactant consumtion parameter � at �xed Pr = 10 and � = 0:01: This table re�ect that

as time increases the rate of heat transfer on the tube surface increases. Also, It is observed

that as � increases the rates of heat transfer increases. This is due to fact that as � enhances

the �uid temperature increases consequently the temperature gradient increases which lead

to a boost in the rate of heat transfer. It is evident from Table 3 that Nusselt number Nu

decreases on increasing Prandtl number Pr which implies that thermal di¤usion tends to

increase rate of heat transfer on the tube. From this table, we can also compare the Nusselt

number of viscoelastic �uid with Nusselt number corresponding to Newtonian �uid (� = 0).

It is noticed that, Nusselt number is higher in case of water (Pr = 7) than dilute polymer

(Pr = 10; 15; 20:::) with an increase in consumption parameter �:It is observed from Table

4 that Nusselt number Nu increase on increasing both time t and consumption parameter �

which implies that there is an enhancement in the rate of heat transfer on tube when both

t and � increases.

5 Conclusions

Analytical solutions for the velocity �eld, temperature distribution, wall shear stress and

Nusselt number are obtained for reactive viscoelastic �uid in a circular tube to analyzed the

e¤ects of �ow type including heat generation current inside the circular tube. The result

shows that the pertinent parameters, such as reactant consumption parameter, �; viscoelastic

parameter, �; activation energy parameter, �; Grashof number, Gr; Prandtl number, Pr; and

time, t; are primary factors a¤ecting the �uid �ow and heat transfer performance in a circular

tube. It is discovered that as � increases the velocity and temperature gradients increase

leading to an increase in the wall shear stress and rate of heat transfer on the circular tube

surface.

Reactant consumption parameter tends to accelerate the �uid temperature whereas ther-

mal di¤usion have reverse e¤ect on it. Thermal buoyancy force and reactant consumption
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parameter tends to enhance �uid velocity. Also, �uid velocity is accelerated as time pro-

gresses. Fluid velocity is slower in the case viscoelastic �uid than that in case of Newtonian

�uid.
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Fig. 1 Schematic representation of the physical model

Fig. 2 E¤ect of the parameter � on � when � = 0:4; � = 0:01; Pr = 10; t = 0:2 and

Gr = Ec = Re = 1:

Fig. 3 E¤ect of the parameter Pr on � when � = 0:4; � = 0:01; � = 0:2; t = 0:2 and

Gr = Ec = Re = 1:
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small time (t = 0:2)

large time (t = 6)

Fig. 4 E¤ect of the parameter � on w when � = 0:01; Pr = 10; � = 0:4 and Gr = Ec =

Re = 1:
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small time (t = 0:2)

large time (t = 6)

Fig. 5 E¤ect of the parameter Gr on w when � = 0:01; Pr = 10; � = 0:4; � = 0:1 and

Ec = Re = 1:
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Fig. 6 E¤ect of the parameter Gr on w when � = 0:01; Pr = 10; � = 0:4; � = 0:1 and

Ec = Re = 1:
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